
An Analysis of Factors Used in Search Engine Ranking

Albert Bifet ∗

Technical University of Catalonia
abifet@lsi.upc.es

Carlos Castillo
University of Chile

ccastillo@dcc.uchile.cl

Paul-Alexandru Chirita
L3S Research Center

chirita@l3s.de

Ingmar Weber
Max-Planck-Institute for Computer Science

iweber@mpi-sb.mpg.de

April 8, 2005

Abstract

This paper investigates the influence of different page
features on the ranking of search engine results. We use
Google (via its API) as our testbed and analyze the re-
sult rankings for several queries of different categories
using statistical methods. We reformulate the problem
of learning the underlying, hidden scores as a binary
classification problem. To this problem we then apply
both linear and non-linear methods. In all cases, we
split the data into a training set and a test set to ob-
tain a meaningful, unbiased estimator for the quality of
our predictor. Although our results clearly show that
the scoring function cannot be approximated well using
only the observed features, we do obtain many interest-
ing insights along the way and discuss ways of obtain-
ing a better estimate and main limitations in trying to
do so.

1 Introduction

In the age of digitalized information the world is relying
more and more on web search engines when it comes
to satisfying an information need. When given a new
task, 88% of the time internet users start at such a search
engine [11]. Part of the search engines’ success might
be due to their simplicity: you enter some words and
the results are then output in form of a ranked list, in

∗Partially supported by the EU within the 6th Framework Pro-
gramme under contract 001907 “Dynamically Evolving, Large Scale
Information Systems” (DELIS) and by the PASCAL Network of Ex-
cellence under EU grant 506778.

which the search engine estimates the relevance of each
indexed website to your query.

Today Google claims to have indexed 8,058,044,651
web pages1. Even with this sheer enormous volume of
information it is relatively “easy” to find a list of pages
containing given query terms. The difficult part is then
to select, from the possible myriad of matching pages,
the “best” 10 or 20 according to some computable qual-
ity measure which, ideally, closely resembles the user’s
notion of relevance. The ability of any search engine to
closely match this human notion has a major impact on
its success.

Users are usually satisfied when the presented rank-
ing leads to an answer to their queries. However, they
normally do not questionwhythey were presented with
exactly this ranking, and how the search engine inferred
which website is most relevant to their particular re-
quest. This situation is usually different when querying
for their own name(s), as one might suddenly wonder
why her personal homepage is (not) ranked highest.

E-commerce websites, on the other hand, have a
much more tangible interest in the exact ranking pro-
cess, as a high ranking in a popular search engine for
a certain product query leads to more web traffic and
ultimately translates into higher sales. Thus, “Search
Engine Optimization” (SEO) has long been recognized
as a lucrative business on its own.

Although the exact details are not publicly known, it

1Interestingly, this number used to remain just below 232 for at
least 9 months, indicating a 32-bit hardware threshold of the previous
implementation. Just on November 11th, 2004 the index size jumped
to about 8 thousand million pages, possibly in response to the launch
of the MSN search engine.

1



is generally assumed that each search engine assigns a
score to each result that satisfies a Boolean search crite-
ria and then sorts the results according to this score. Its
value depends on the value of certainfeaturesof each
webpage in the result set, e.g. its PageRank score, the
text similarity between the query and the document, etc.

In this paper we approximate the underlying ranking
function by analyzing query results. First, we obtain
for each query result numerical values for a large num-
ber of observable features, thus converting each docu-
ment into a vector. We then train our models on the dif-
ference vectors between documents at different ranks.
By labeling these vectors with “+” for the direction to-
wards the top and “–” otherwise, we reformulate our
problem as a binary classification one: given a pair of
documents, we try to predict which one is ranked above
the other. This gives a partial order of the vectors, i.e.,
documents. Therefore, the binary classification trees we
used do not give a complete order, i.e., a full ranking.
On the other hand, for the models with linear decision
boundaries, namely logistic regression and support vec-
tor machines, the normal vector to this linear boundary
gives the trendline of the direction of an improvement
in the underlying scores and the scalar product with this
vector gives a full ranking. Although our methodology
can be applied to any search engine, we chose Google as
it is nowadays the most widely used [3]. More specif-
ically, we used the Google API [5] to retrieve search
results.

In section 2 we discuss previous work on this sub-
ject. We then describe our statistical methodology for
estimating the ranking function in section 3. Section
4 briefly presents the components of the system. Sec-
tion 5 gives our experimental results. Possible improve-
ments and shortcomings of our approach are discussed
in section 6.

2 Related Work

Pringle, Allison and Dowe [13] addressed both the
problem of determining when certain pages are re-
trieved at all, and that of explaining how a given ranking
was obtained. For the first problem they used decision
trees, while the second was tackled using linear regres-
sion, exploiting the explicit scores returned by InfoSeek
[8]. Both of these approaches are different from ours as
is the way they obtained their data, namely by creating
artificial websites and not using real web pages as we
are. Furthermore, they did not use a separate test data

set to obtain an unbiased estimator of the quality of their
predictor.

Sedigh and Roudaki [15] presented a simple linear
regression model that approximates the dynamics gov-
erning the behavior of Google where, given some ob-
servable features, they try to predict theabsoluterank of
a webpage. This has, among other things, the disadvan-
tage that once documents are added such a prediction
can no longer hold, as you trained on absolute ranks,
which depend on the knowledge of all documents in the
set. Our approach has the advantage that the universe of
documents does not need to be known. Especially for
their methodology it would have been interesting to see
the performance on a separate test data set that was not
used for training.

Joachims [9] presented an approach to automatically
optimize the retrieval quality of search engines using
clickthrough data. He rephrased the problem of learn-
ing a linear ranking as one of binary classification with
linear decision boundaries and then applied Support
Vector Machines (SVM) to this inference problem. We
use the same reformulation, though we do not restrict
ourselves to SVMs.

There is also a substantial amount of literature on var-
ious theoretical aspects of learning a ranking function,
see, e.g., [2, 4]. As our focus was on obtaining anin-
terpretablemodel for the ranking function, we limited
ourselves to using logistic regression, SVMs and binary
classification trees.

3 Estimating a Ranking Function

Our goal is to obtain an estimation functionf for the
scoring function of a search engine, and then to com-
pare our predicted rankings with the actual rankings of
this search engine.

3.1 Data set

As it is unlikely that a large search engine would em-
ploy the same ranking criterion for all types of queries,
we used several sets of homogeneous queries, all deal-
ing with a certain topic, assuming that they are ranked
with the same function.

Table 1 shows our queries dataset, which is divided
into four categories: Art, States, Spam and Multiple.
Arts is a list of artists and States is a list of US States.
For both of these categories the queries consisted of a
single term. The Spam category contains phrases for

2



Table 1: Table of training, validation and test data clas-
sified by the query data set. Validation data is used for
feature selection and tree pruning. The test data is only
used to get an unbiased estimate of the generalization
error.

Dataset Type Query terms

Arts Training Albertinelli, Bacchiacca, Botticelli,
Botticini, Foschi, Franciabigio,
Leonardo

Validation Michelangelo, Picasso

Test Pordenone, Rosselli, Verrocchio

States Training Arizona, Arkansas, Connecticut,
Idaho, Illinois, Iowa, Kansas

Validation Michigan, Nevada

Test Ohio, Oregon, Utah

Spam Training buy cds, buy dvds, cheap software,
download movies, download music,
dvd player, free movies

Validation free mp3, free music

Test free ringtones, music videos, soft-
ware downloads

Multiple Training anova bootstrap feature missing
principal squared, analysis frequent
likelihood misclassification pruning
statistical, adaptive classification
gating linear model proximity sub-
set, association generalization local
naive regularization test, analysis
cubic gradient margin optimal risk
support, automatic decision valida-
tion overfitting smoother adaptive,
activation discriminant hyperplane
loss single validation

Validation basis eigenvalue margin maximum
local support, basis early informa-
tion adaboost margin soft

Test logistic bias entropy markov piece-
wise loss, feature complexity gaus-
sian logistic normal ridge training,
discriminant gaussian link multiple
radial supervised

which one can expect many “search engine optimized”
web pages. If a search engine wants to retrieve any high
quality pages for such queries it must use an elaborate
ranking function. Finally, the Multiple category con-
sists of queries with 6 terms from the domain of statis-
tical inference.

One of our main contributions lies in the statistical
rigor with which we approach the problem. Thus, for
example, to obtain statistically meaningful results we
partition the 12 queries for a given category into three
disjoint sets:

Training Set (7 queries): We use this set of queries to
learn a linear scoring function or a decision tree.
The data that we actually trained on consists of dif-
ference vectors corresponding to different feature
vectors. See section 3.2 for a detailed explanation.

Validation Set (2 queries): The validation set is used
for greedy stepwise forward feature selection and
for pruning the decision tree. In cases where fea-
tures were selected directly, this set was merged
with the training one. Tree pruning is explained in
section 3.5.

Test Set (3 queries): To estimate the generalization er-
ror of our ranking function, we compare our pre-
dicted rankings with the observed rankings for
these queries. Simply testing the performance on
the training set itself leads to an overly optimistic
estimate of the quality of the model. Without the
use of such a set, we could have obtained wrong,
but seemingly better, results due to overfitting.

3.2 Reformulation as binary classification
problem

Let q be a query, andu,v be feature vector of pages,
where each entry in the vector corresponds to a particu-
lar feature, e.g., how often a query term appears on the
page or whether or not it appears in the URL (the list of
features we considered is provided in section 4.2).

Let u <q v represent the ordering returned by the
ranking function of a search engine for the given query,
sou <q v if and only if the page with feature vectoru is
ranked below the one with feature vectorv in the search
engine’s results to queryq. In the following, we drop
the subscriptq.

Ultimately, we want to find a real-valued functionf
such thatf (u) < f (v) wheneveru < v. If we assume

3



that f is linear, then there exists a vectorw such that
f (u) = w ·u, using· to denote the scalar product.

Then,

f (u) < f (v)
⇔ w ·u < w ·v
⇔ w · (v−u) > 0 .

So the problem of finding a linear functionf is equiv-
alent to finding a vectorw such that(v−u) ·w > 0 if and
only if v is ranked aboveu. Geometrically speaking,w
points in the direction of the increase in score value and
the vectors are sorted according to the length of their
projection onto this direction. If we label the difference
vector(v−u) “x” if v is ranked aboveu and “–” oth-
erwise we see that our problem is equivalent to finding
a hyperplane with normalw which perfectly separates
the “+” and the “–” training points.

Conversely, if we have a binary classification scheme
which uses a linear decision boundary through the ori-
gin, we can use the normal vector to this plane as ourw
which defines the functionf . As our data is symmetric
about the origin by construction –because each compar-
ison between two different ranks leads to two vectors
pointing in opposite directions– many schemes will sat-
isfy the property. Note that the real data will not per-
fectly follow a linear function in the observed features
as we might not know all the underlying features which
are actually used and because the function is most prob-
ably non-linear. Thus, our classification scheme needs
to cope with misclassified points.

In the following we briefly introduce two classifica-
tion schemes with linear decision boundaries, logistic
regression models and support vector machines, and
also discuss the use of binary classification trees, which
are highly non-linear. See [6] for a good introduction
to the area of statistical learning algorithms. We will
write x for an either labeled or unlabeled difference vec-
tor v−u and consider the task of classifying unlabeled
points into one of the two classes “+” or “–”.

It is worth noting that we not only train these lin-
ear models on the original features but we also ex-
perimented with including quadratic terms of features
which, in the original feature space, leading to non-
linear decision boundaries which can capture more sub-
tle relations but are also more prone to overfitting. See
section 3.7 for details on the issue of feature selection
and transformations.

3.3 Logistic Regression

Logistic regression models the posterior probabilities of
the classes, i.e., the probabilities of belonging to a cer-
tain class given the coordinatesx, via linear functions
in the coordinate vector. In the case of only two classes
“–” and “+” the model has the form

log
P(class = “+”|X = x)
P(class = “–”|X = x)

= β0 +w ·x (1)

As it can be seen easily, thisgives rise to linear de-
cision boundaries, on whichP(class = “+”|X = x) =
P(class = “–”|X = x). Due to the symmetry in our data
the offsetβ0 will be zero and the vectorw gives the
desired weights of the factors involved, indicating the
direction from low ranks to high ranks. We refer the
reader to [6] for a full description of the training algo-
rithm. For our experiments we used Matlab’s imple-
mentation ofglmfit (generalized linear model) with a
binomial distribution to compute the logistic regression
models.

3.4 Support Vector Machines

Support Vector Machines typically use linear decision
boundaries in atransformedfeature space. The idea is
that often in this higher, or even infinitely, dimensional
space the data becomes separable by hyperplanes. As
the mapping does not need to be computed implicitly,
but only inner products defining the kernel need to be
known, this approach becomes feasible. However, as
we want to be able to ultimately use the related normal
vector for ranking in the original feature space we only
use support vector machines with linear kernels which
correspond to hyperplanes in this space. For our ex-
periments we used theSMV light [10] implementation
with the default setting for the parameterC which is the
average of(x ·x)−1. This parameter allows trading-off
margin size against training error.

3.5 Binary Classification Trees

The function f that is used in practice by a real search
engine might not be linear for a variety of reasons. One
is that, for efficiency reasons, a search engine might use
several layers of indices, where the first layer is able
to answer most queries and only if this level fails the
query is send to subsequent levels. Such a behavior and
other simple non-linear behaviors, as using thresholds

4



for certain features, can at least partly be captured by
decision trees.

A classification tree is built through a process known
as binary recursive partitioning. The algorithm itera-
tively breaks up the records into two parts, examining
one variable at a time and splitting the records on the
basis of a dividing line in that variable. The process
continues until no more useful splits can be found. To-
ward the end, idiosyncrasies of training records at a par-
ticular node display patterns that are peculiar only to
those records. These patterns can become meaningless
and often harmful for predicting unknown labels. Prun-
ing the tree is the process of removing such leaves and
branches to shrink the tree to a smaller set of crucial
splits which leads to a better performance on general
data. For our experiments we used Matlab’s implemen-
tation oftreefit andtreeprune.

3.6 Selecting Difference Vectors

In most cases we trained onall possible pairs, which
for n results aren(n− 1) pairs, each pair resulting in
two difference vectors with opposite labels. This se-
lection of pairs was used to train both the logistic re-
gression models and the SVM classifiers. To reduce
the computation time for the classification trees we only
trained on “shifted pairs” of the form (1,bn/2c+1), (2,
bn/2c+ 2), ... (bn/2c,n), where again each such pair
gives rise to two difference vectors. For this subset of
pairs there are thus 2×dn/2e points to classify. Due to
the large constant difference between considered ranks
these pairs are expected to be rather robust with re-
spect to noise due to only minor differences between
consecutive ranks. However, training the linear models
with this subset made hardly any difference compared
to training them on all pairs. So we conjecture that more
pairs would not give significantly different classifica-
tion trees.

3.7 Feature Selection and Transforma-
tions

The importance of the individual features for each of the
four categories is given in Table 2. This table gives the
precision which can be obtained on the entire data set
(for each category, downloading the top 100 results per
query) if we only ranked according to a single feature.

We experimented with various strategies of select-
ing subsets and functions of the original features as
input values for the data mining algorithms. Subsets

Table 2: Table of the precision values obtained using
only individual features to predict the ranking –feature
abbreviations are explained in section 4.2. The top three
features for each query set are shown in bold, and a (-)
indicates a negative correlation.

Feature Arts States Spam Multiple

NBOD (-)53.8% 54.4% 51.1% 50.9%
FNEN (-)59.4% 53.5% 51.6% (-)59.8%
RFFT 52.1% (-)54.3% 50.0% 53.9%
ATLE (-)54.2% 54.0% 50.0% 54.4%
FATT 56.2% 50.3% 53.0% 51.8%
AMQT 55.4% 50.5% 52.1% 56.9%

SIMT (N) 56.5% (-)52.0% 52.7% 59.0%
SIMT 55.4% (-)50.9% 52.6% 69.7%

TMKY (N) 51.4% 51.4% 54.5% 50.0%
TMKY 53.0% 51.4% 55.1% 50.0%
ILNK 58.0% 66.3% 57.0% 53.9%
PRNK 58.7% 60.6% 55.0% 57.2%
TDIR 52.3% 53.5% 54.3% 51.9%

of features were selected in two ways. Firstly, in a
greedy stepwise forward manner, always adding the
feature which gave the best improvement on the val-
idation data set. This strategy did not give better re-
sults than the other approaches, and thus we omit its
results. Secondly, we used thep strongest features for
p∈ 1,3,5,10.

Furthermore, we did not only use the raw features
but also experimented with non-linear combinations of
them. Forp ∈ 3,5,10 we included all the quadratic
terms of the selected features and trained a logistic re-
gression model on this transformed input data. Thus,
when working with featuresx1, x2 andx3 we also in-
clude all quadratic terms such asx1× x3 andx2

2. If we
havep basic features then we getp+ p(p−1)/2 new
features, including the linear terms. For no data set this
gave better results on the test set than working with only
the untransformed linear terms.

Lastly, we tried monotone transformations such as
log(1+ x), 1/(1+ x) and 1− e−x on features such as
the number of inlinks, the document length or the num-
ber of term occurrences which follow a power law. This
only lead to slightly worse results which are not in-
cluded here.

3.8 Normalization

Generally, the outcome of a statistical inference algo-
rithm can depend heavily on the use of data normaliza-

5



tion. This is not the case in our setting. Firstly, it should
be clear that multiplying the value of any featurei in
all data points by a constantγ simply rescales the fi-
nal scoring weightbi by 1/γ. More interestingly, also
rescaling the individual difference vectorsx has almost
no influence. The sign ofx ·w does not depend on the
length ofx, thus any linear scheme working only with
the numberof misclassified training points will yield
the same result. The only property that does change is
the distance from the separating hyperplane which, for
instance, influences the posterior probabilities in logis-
tic regression. However, experiments showed that the
overall results were almost identical, also for the classi-
fication trees, with very slightly better results obtained
by training on the unnormalized difference vectors. All
experimental numbers refer to this unnormalized set-
ting.

4 System Architecture

To extract the feature sets used in our analysis we built a
system with three components: a downloader, a parser,
and an analyzer.

Downloader: software that executes a query and
downloads the returned pages using the data set
queries

Feature Extractor: software that computes the fea-
tures of the pages downloaded.

Analyzer: software that analyzes the features of the re-
turned pages and estimates a function using nu-
merical methods.

4.1 Downloader

The downloader receives as an input a data set of
queries (see Table 1). For each such query it does the
following:

1. Submits the query to the search engine, i.e. to the
Google API in our case, downloads all URLsui

obtained as result set, and checks whether they or
their domain are contained in the Open Directory
[12]. This is another feature which might influ-
ence the ranking function of a search engine, and
thus we included it in our study. For simplicity
and to avoid bias based on the file type, we limited
ourselves to HTML pages.

2. For each ui , it then sends a query to ob-
tain the number of inlinks, using Google API’s
”link:www.abc.om” syntax, as well as the top 5
in-linking pages. We had to limit ourselves to 5 in-
links because of the reduced access offered by the
Google API to the search service, i.e., only 1000
queries of 10 answers per day, per user.

3. Finally, it downloads these 5 pages to further ana-
lyze their anchor text.

Also, for each individual query term, the “Down-
loader” submits a single query and outputs the estimate
number of results. This will be later used to compute the
inverse document frequency value for the tf-idf similar-
ities [14].

4.2 Feature Extractor

The Feature Extractor receives as an input the down-
loaded pages. Pages are converted to XML usingtidy,
to be able to use the DOM (document object model)
API for accessing different parts of the document. This
is useful for checking if query terms appear in some
special formatting element such as boldface.

We divide the list of the page features that are ex-
tracted by the parser into: content, formatting, link and
metadata. Where sensible we included both raw and
normalized versions of features, e.g. counting both the
absolute number of query term occurrences in the ti-
tle and the percentage of query terms appearing there.
Here is the complete list of features we extracted. An
(N) after a feature indicates that we also considered a
normalized/averaged version of this feature.

Content features, query independent:

• DIFT Number of different terms of the document

• FNEN Fraction of terms in the documents which
can not be found in an English dictionary

• NBOD Number of bytes of the original document

• NBTO Number of bytes of text in the original docu-
ment

• RFFT Relative frequency of the more frequent
term, i.e.: term frequency. If a document has 3
words and the most frequent word repeats 2 times,
then this is 2/3

• ATLE Average term length

Content features, query dependent:

6



• TFQT Term frequency of query term = Number of
occurrences of the query term (averaged over the
different query terms) (N)

• SIMT Similarity of the term to the document, in
terms of vector space model. We compute it us-
ing the frequency of terms in documents and the
inverse document frequency of each term. (N)

• APQT Average position of the query terms in the
document = 1 at the beginning, 0 if at the end and
in-between in the middle.

• AMQT Average matches of the query terms

• CTQW Closeness of terms in the query in the web-
page (distance in number of terms , smallest win-
dows containing all of them)

• FATT Anchor text term frequency

Formatting features, query-dependent. We used the
number of “special” occurrences divided by the total
number of occurrences of query terms:

• THTM Term in a special document zone including
HTML tags: B, I, U, FONT, BIG, H1-H6, A, LI and
TITLE (N)

• TATV Term as an attribute value (ele-
ment/@attribute): IMG/@ALT, IMG/@TITLE
(N)

• TMKY Term in the meta keywords or description
(N)

• TCLP Term in capitals in the page (N)

Link features, query-independent:

• ILNK Number of pages linking to a page, in-degree
approximated using Google APIlink: queries

• PRNK PageRank of the page, or the approximation
of the PageRank in a 0-10 scale obtained from
Google’s toolbar.

• OLNK Number of out-links in the page

• FOLN Fraction of out-links to external Web sites

Metadata features:

• TURL Term is in the page’s URL or not.

• TDIR Term is listed in a web directory or not.

We computed text similaritySIMT of the query and
the returned document.SIMT is computed using a TF-
IDF weighting scheme similar to the one used by Salton
[14], where the similarity is defined using the weight of
each query term. This weight is computed using the
normalized frequency of terms in documents and the
id f inverse document frequency of each term.

4.3 Analyzer

The analyzer is the component is the last stage of our
system and obtains the estimate of the ranking func-
tion. The statistical methods used to obtain this esti-
mate were discussed in section 3. To evaluate the per-
formance we used the following quality measures, each
having its own justification.

1. Precision on all pairs: This measure simply looks
at all possible pairs and the corresponding differ-
ence vectors. The precision is the percentage of
correctly classified vectors, thus corresponding to
a correct “u is ranked abovev” decision. For the
cases where we also have a total ordering, namely
for logistic regression and the SVM model, this
measure can be computed from the Kendall’sτ
measure as: 50%+ 50 * Kendall’sτ %.

2. Precision on “shifted” pairs: See 3.6 for a de-
scription of the “shifted” pairs. Here we only look
at the percentage of correctly classified “shifted”
pairs, which are further apart in the original rank-
ing and their relative order is thus easier to predict.

3. Precision on “top” pairs: Here we only consider
for each query the top result and all its difference
vectors. This number thus gives the percentage of
web pages which are (correctly) predicted to be
ranked below the highest ranking document.

5 Experimental Results

To give a quantitative estimate of the importance of
each individual feature Table 2 gives the precision
values which can be obtained for each category if
one rankedonly according to this individual feature.
However, only features which were among the top 5
strongest for at least one category are included in the
table. A (-) indicates that the feature is negatively cor-
related with the score, i.e., an increase in the feature
value is an indicator for a worse ranking. Note that us-
ing only the strongest feature gives a precision between

7



Table 3: Ranking for the query ”discriminant gaus-
sian link multiple radial supervised” from the Multiple
query set when usingonly the SIMT feature. There
were 33 results for this query.

Predicted rank 1 2 3 4 5 6
Google rank 3 5 6 4 13 2

57% for the Spam category and 69.7% for the Multiple
category. Table 3 gives the top 6 results of a query rank-
ing obtained when only using the text similarity (SIMT)
feature. For the Arts category the strongest indicator
of a high ranking was a low fraction of non-English
terms (FNEN), followed by the PageRank (PRNK). For the
States queries the by far strongest such indicator was the
number of in-links (ILNK). For the Spam query this was
also the strongest feature but far less significantly, em-
phasizing that for these queries it would be fatal to put
too much weight on any individual feature. Out of all
four categories it was also this category where the di-
rectory information (TDIR) was most closely linked to
the ranking. Lastly, for the long queries from the Multi-
ple category theSIMT was most closely correlated with
the ranking.

The best performances of any model for each cat-
egory are listed in Table 4. Unfortunately, these are
only marginally better than the baseline values for the
strongest feature in Table 2. Table 4 also lists the details
of the corresponding model. The best pruned trees con-
sisted in almost all cases of a single node correspond-
ing to the strongest individual feature. The fact that the
SVMs did not give an improvement over the baseline
for any model might be due to an inappropriate (default)
choice of the regularization parameterC with which the
authors did not experiment.

It is worthing pointing out that the precision is sig-
nificantly higher for the “shifted” pairs, as can be seen
from the second column of Table 4. These pairs are
further apart and are thus easier to classify as, in gen-
eral, the differences in the relevant features will be more
striking.

6 Shortcomings and Room for Im-
provement

As across all data sets and for all methods and feature
transformations considered the best test precision was
only about 65%, as shown in Table 4 the question arises,
how this could be improved?.

Working with only our collection of features we can,
given the number of different methods and transforma-
tions we tried, safely claim that the answer is a negative
one: it cannot be improved substantially. More features,
such as the domaing ending (.edu, .com, etc.), which
also could have an influence on the ranking, could be
included in the analysis but are unlikely to give a dra-
matic boost. Similarly, much larger training data sets
would probably exhibit only a minor influence; in our
case we were strongly hindered by the query limitations
of the Google API. The real problem seems to lie in the
fact that many crucial features are hidden and cannot be
observed from the outside.

These features which are certainly relevant may in-
clude:

• The query logs, which Google obtains through its
toolbar.

• The age of the incoming links and other informa-
tion related to web link dynamics.

• The rate of change at which a website changes, ob-
tained by repeated web crawls.

• The “true” number of ingoing links, as Google’s
link:www.abc.com only gives a lower bound.

• The “true” PageRank used by Google, as the one
displayed in its toolbar is only an approximation,
and furthermore, seems to be too strongly corre-
lated to the number of in-links [16].

Some of these could, however, theoretically be ob-
tained by a web search engine with a large enough set
of indexed web pages. It might also be worth including
a category with random, artificial terms or numbers, as-
suming that there are still a few hits for these terms. For
such a category at least the use of query logs could be
largely ruled out.

More fundamentally, one can only speculate about
the algorithmic details. It is, e.g., possible that Google
uses (variants of) topic-sensitive PageRank [7] or the
Hilltop algorithm [1], both of which try to overcome the

8



Table 4: Best precision achieved on all, “shifted” and “top” pairs. We include the performance on the test data as
well as on the whole data set, including training, validation and test sets.

% all % “shifted” % “top”
pairs correct pairs correct pairs correct

Dataset Test All Test All Test All Best model
Arts 63.7% 61.8% 69.1% 66.4% 47.6% 48.0%Log. regr., strongest 3 features

States 64.6% 66.3% 73.2% 73.8% 97.6% 98.5%Class. tree, only ILINK feature
Spam 62.5% 59.5% 70.5% 62.1% 98.2% 74.8%Log. regr., strongest 10 features

Multiple 67.5% 70.9% 78.1% 81.3% 81.0% 87.0%Log. reg., strongest 3 features

notion of a global, topic-independent measure of qual-
ity, which is inherent to PageRank. For these algorithms
the ranking would no longer be a function of simple
features and a much more elaborate analysis would be
needed.

One should also not forget that any web search en-
gine always has the option of “manually” re-ranking the
results for certain queries. It is known that in certain
countries search engines voluntarily cooperate with the
authorities to exclude certain web pages for legal rea-
sons from their results. Likewise, it is imaginable that
for certain queries pages are pushed up or down because
of financial or other agreements.

The reason for us to choose different query categories
and to try to have “homogeneous” queries within one
category was that we assume that a query is first cate-
gorized and then handled according to the categoriza-
tion. This categorization could involve the scan for cer-
tain keywords indicating a certain topic but it could also
involve inferring information about the type of question
(homepage finding vs. question answering) and the type
of user. A query such as “I’m looking for information
about search engines” containing several stopwords,
might indicate a user less familiar with using search en-
gines and thus less careful in choosing the query terms.
This could imply a boost of query-independent features
for such queries. Likewise, a user using advanced query
syntax who “knows what he is doing” might be better
off with a different ranking scheme. This could be the
reason why the queries “adversarial” and “adversarial
-lairasrevda” (excluding adversarial spelled backwards)
lead to different rankings on Google, although concep-
tually there is no reason for this.

It is even possible –and sensible– for a web search
engine to take information about the query initiator into
account. Such information could either be collected

in the form of data cookies or, simply, by considering
the browser language, connection type or geographi-
cal location. A user with a dial-up connection will
generally have a different user profile from a user of
a high-speed university domain so that different rank-
ing schemes might be appropriate. Similarly, a user in
Spain might prefer a different ranking than a user in
Germany.

7 Conclusions

Along this study we attempted to produce a complete
method for learning search engine ranking function(s).
Overall, our experiment was sound and its results were
very consistent: ranking only according to the strongest
feature for a category gives is able to predict the order in
which any pair of pages will appear in the results with
a precision of between 57% (for a data set including
commercial terms that are used in spam) and 70% (for
a data set including long queries from a very specific
domain). This was, despite trying various algorithms
and feature transformations, only mildly improved by
including other features.

If one had not split the data into a training and a
test set one could have, given the large number of fea-
tures and transformations we considered, achieved an
almost arbitrarily high precision on the training data,
but a worse performance on unseen data. In this arti-
cle we have also discussed the reasons for these results,
which are likely to be related to the lack of many cru-
cial features such as user preferences data and algorith-
mic details such as the possible use of topic-sensitive
PageRank.

9



Acknowledgment

The authors would like to thank Dr. Jörg Rahnenf̈uhrer
for useful suggestions and clarifications concerning
some aspects of the data mining algorithms used.

References

[1] K. Bharat and G. A. Mihaila. When experts agree:
using non-affiliated experts to rank popular top-
ics. In WWW ’01: Proceedings of the tenth in-
ternational conference on World Wide Web, pages
597–602, 2001.

[2] W. Cohen, R. Schapire, and Y. Singer. Learning
to order things.Journal of Artificial Intelligence
Research, 10:243–270, 1999.

[3] comScore Networks. Press release, 2004.
[4] J. D́ıez, J. J. del Coz, O. Luaces, F. Goyache,

A. M. P. J. Alonso, and A. Bahamonde. Learn-
ing to assess from pair-wise comparisons.LNCS,
2527, 2002.

[5] Google api. http://api.google.com.
[6] T. Hastie, R. Tibshirani, and J. Friedman.The El-

ements of Statistical Learning. Springer, 2003.
[7] T. H. Haveliwala. Topic-sensitive pagerank. In

WWW ’02: Proceedings of the eleventh interna-
tional conference on World Wide Web, pages 517–
526. ACM Press, 2002.

[8] Infoseek search engine.
http://www.infoseek.co.uk/.

[9] T. Joachims. Optimizing search engines using
clickthrough data. InKDD ’02: Proceedings of
the eighth ACM SIGKDD international confer-
ence on Knowledge discovery and data mining,
pages 133–142. ACM Press, 2002.

[10] T. Joachims. Svm-light support vector machine,
2002. http://svmlight.joachims.org/.

[11] J. Nielsen. When search engines become answer
engines.Jakob Nielsen’s Alertbox, August 2004.

[12] Open directory project. http://dmoz.org/.
[13] G. Pringle, L. Allison, and D. L. Dowe. What is

a tall poppy among web pages?Computer Net-
works and ISDN Systems, 30:369–377, 1998.

[14] G. Salton and C. Buckley. Term-weighting ap-
proaches in automatic text retrieval.Informa-
tion Processing and Management, 24(5):513–523,
1988.

[15] A. K. Sedigh and M. Roudaki. Identification of the
dynamics of the google’s ranking algorithm. In

13th IFAC Symposium On System Identification,
2003.

[16] T. Upstill, N. Craswell, and D. Hawking. Pre-
dicting fame and fortune: Pagerank or indegree?
In Proceedings of the Australasian Document
Computing Symposium, ADCS2003, pages 31–40,
Canberra, Australia, December 2003.

10


